Hubble revela estrella compañera sobreviviente después de supernova


El Telescopio Espacial Hubble de la NASA ha descubierto un testigo en la escena de la muerte explosiva de una estrella: una estrella compañera previamente escondida en el resplandor de la supernova de su pareja. El descubrimiento es el primero para un tipo particular de supernova, en el que la estrella fue despojada de toda su envoltura exterior de gas antes de explotar.

La ilustración de este artista muestra la supernova 2013ge, con su estrella compañera en la parte inferior derecha. La estrella compañera es impactada por la onda expansiva de la supernova, pero no es destruida. Con el tiempo, los astrónomos observaron que la luz ultravioleta (UV) de la supernova se desvanecía, revelando una segunda fuente cercana de luz UV que mantenía el brillo. La teoría es que las dos estrellas masivas evolucionaron juntas como un par binario, y que la sobreviviente actual desvió la capa exterior de gas hidrógeno de su compañera antes de que explotara. Eventualmente, la estrella compañera también se convertirá en supernova. Crédito: NASA, ESA, Leah Hustak (STScI)

El hallazgo proporciona una visión crucial de la naturaleza binaria de las estrellas masivas, así como la posible precuela de la fusión final de las estrellas compañeras que sacudirían el universo como ondas gravitacionales, ondas en el tejido del propio espacio-tiempo.

Los astrónomos detectan la firma de varios elementos en las explosiones de supernovas. Estos elementos están en capas como una cebolla pre-supernova. El hidrógeno se encuentra en la capa más externa de una estrella, y si no se detecta hidrógeno después de la supernova, eso significa que se eliminó antes de que ocurriera la explosión.

La causa de la pérdida de hidrógeno ha sido un misterio, y los astrónomos han estado usando el Hubble para buscar pistas y probar teorías para explicar estas supernovas desnudas. Las nuevas observaciones del Hubble brindan la mejor evidencia hasta ahora para respaldar la teoría de que una estrella compañera invisible extrae la envoltura de gas de su estrella compañera antes de que explote.

«Este era el momento que habíamos estado esperando, ver finalmente la evidencia de un sistema binario progenitor de una supernova completamente desnuda», dijo el astrónomo Ori Fox del Instituto de Ciencias del Telescopio Espacial en Baltimore, Maryland, investigador principal del programa de investigación Hubble. «El objetivo es mover esta área de estudio de la teoría al trabajo con datos y ver cómo se ven realmente estos sistemas».

El equipo de Fox usó la cámara de campo ancho 3 del Hubble para estudiar la región de la supernova (SN) 2013ge en luz ultravioleta, así como observaciones previas del Hubble en el Archivo Barbara A. Mikulski para telescopios espaciales (MAST). Los astrónomos vieron que la luz de la supernova se desvanecía con el tiempo desde 2016 hasta 2020, pero otra fuente cercana de luz ultravioleta en la misma posición mantuvo su brillo. Esta fuente subyacente de emisión ultravioleta es lo que el equipo propone como el compañero binario superviviente de SN 2013ge.

¿Dos por dos?

Previamente, los científicos teorizaron que los fuertes vientos de una estrella progenitora masiva podrían volar su envoltura de gas de hidrógeno, pero la evidencia observacional no lo respaldó. Para explicar la desconexión, los astrónomos desarrollaron teorías y modelos en los que un compañero binario extrae el hidrógeno.

Esta infografía muestra la evolución propuesta por los astrónomos para la supernova (SN) 2013ge. Los paneles 1-3 muestran lo que ya ocurrió y los paneles 4-6 muestran lo que puede ocurrir en el futuro. 1) Un par binario de estrellas masivas se orbitan entre sí. 2) Una estrella envejece hasta su etapa de gigante roja, obteniendo una envoltura exterior hinchada de hidrógeno que su estrella compañera extrae con la gravedad. Los astrónomos proponen que esta es la razón por la que el Hubble no encontró rastros de hidrógeno en los restos de la supernova. 3) La estrella de envoltura desnuda se convierte en supernova (SN 2013ge), empujando pero sin destruir a su estrella compañera. Después de la supernova, el núcleo denso de la antigua estrella masiva permanece como estrella de neutrones o como agujero negro. 4) Eventualmente, la estrella compañera también envejece hasta convertirse en una gigante roja, manteniendo su envoltura exterior, parte de la cual proviene de su compañera. 5) La estrella compañera también sufre una supernova. 6) Si las estrellas estuvieran lo suficientemente cerca unas de otras para no ser expulsadas de sus órbitas por la onda expansiva de la supernova, los núcleos remanentes continuarán orbitando entre sí y eventualmente se fusionarán, creando ondas gravitacionales en el proceso. Crédito: NASA, ESA, Leah Hustak (STScI)

«En los últimos años, muchas líneas de evidencia diferentes nos han dicho que es probable que las supernovas desnudas se formen en binarios, pero aún teníamos que ver a la compañera. Gran parte del estudio de las explosiones cósmicas es como la ciencia forense: buscar pistas y ver qué teorías coinciden. Gracias al Hubble, podemos ver esto directamente», dijo Maria Drout de la Universidad de Toronto, miembro del equipo de investigación del Hubble.

En observaciones anteriores de SN 2013ge, el Hubble vio dos picos en la luz ultravioleta, en lugar del que normalmente se ve en la mayoría de las supernovas. Fox dijo que una explicación de este doble brillo es que el segundo pico muestra cuando la onda de choque de la supernova golpea a una estrella compañera, una posibilidad que ahora parece mucho más probable. Las últimas observaciones del Hubble indican que, si bien la estrella compañera fue empujada significativamente, incluido el gas de hidrógeno que había desviado de su pareja, no fue destruida. Fox compara el efecto con un cuenco de mermelada que se agita, que eventualmente volverá a su forma original.

Si bien es necesario encontrar una confirmación adicional y descubrimientos de apoyo similares, Fox dijo que las implicaciones del descubrimiento siguen siendo sustanciales y respaldan las teorías de que la mayoría de las estrellas masivas se forman y evolucionan como sistemas binarios.

Uno para mirar

A diferencia de las supernovas que tienen una capa hinchada de gas para encenderse, los progenitores de las supernovas con envoltura totalmente desnuda han resultado difíciles de identificar en las imágenes previas a la explosión. Ahora que los astrónomos han tenido la suerte de identificar la estrella compañera sobreviviente, pueden usarla para trabajar hacia atrás y determinar las características de la estrella que explotó, así como la oportunidad sin precedentes de ver cómo se desarrollan las consecuencias con el sobreviviente.

Como estrella masiva en sí misma, la compañera de SN 2013ge también está destinada a sufrir una supernova. Es probable que su antiguo compañero ahora sea un objeto compacto, como una estrella de neutrones o un agujero negro, y es probable que el compañero también siga ese camino.

La cercanía de las estrellas compañeras originales determinará si permanecen juntas. Si la distancia es demasiado grande, la estrella compañera será expulsada del sistema para vagar sola por nuestra galaxia, un destino que podría explicar muchas supernovas aparentemente solitarias.

Sin embargo, si las estrellas estaban lo suficientemente cerca unas de otras antes de la supernova, seguirán orbitando entre sí como agujeros negros o estrellas de neutrones. En ese caso, eventualmente se unirían en espiral y se fusionarían, creando ondas gravitacionales en el proceso.

Esa es una perspectiva emocionante para los astrónomos, ya que las ondas gravitacionales son una rama de la astrofísica que apenas ha comenzado a explorarse. Son ondas u ondas en el tejido del propio espacio-tiempo, predichas por Albert Einstein a principios del siglo XX. Las ondas gravitacionales fueron observadas directamente por primera vez por el Observatorio de ondas gravitacionales con interferómetro láser (LIGO).

«Con el compañero sobreviviente de SN 2013ge, podríamos estar viendo la precuela de un evento de ondas gravitacionales, aunque tal evento aún sería alrededor de mil millones de años en el futuro», dijo Fox.

Crédito: CIENCIA: Ori Fox (STScI)

Fox y sus colaboradores trabajarán con el Hubble para construir una muestra más grande de estrellas supervivientes compañeras de otras supernovas, lo que le dará de nuevo compañía a SN 2013ge.

«Hay un gran potencial más allá de la comprensión de la supernova en sí misma. Dado que ahora sabemos que la mayoría de las estrellas masivas del universo se forman en pares binarios, las observaciones de las estrellas compañeras sobrevivientes son necesarias para ayudar a comprender los detalles detrás de la formación binaria, el intercambio de materiales y la co- desarrollo evolutivo. Es un momento emocionante para estudiar las estrellas «, dijo Fox.

«Comprender el ciclo de vida de las estrellas masivas es particularmente importante para nosotros porque todos los elementos pesados ​​se forjan en sus núcleos y a través de sus supernovas. Esos elementos constituyen gran parte del universo observable, incluida la vida tal como la conocemos», agregó el coautor Alex Filippenko. de la Universidad de California en Berkeley.

Los resultados se publican en The Astrophysical Journal Letters.

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.