Un equipo internacional agrupado entorno a la Colaboración del Event Horizon Telescope (EHT), que es conocido por capturar la primera imagen de un agujero negro en la galaxia Messier 87, ahora ha fotografiado el corazón de la cercana radiogalaxia Centaurus A con un detalle sin precedentes. Los astrónomos señalaron la ubicación del agujero negro supermasivo central y revelaron el nacimiento deun chorro gigantesco. Lo más notable es que solo los bordes exteriores del chorro parecen emitir radiación, lo que desafía los modelos teóricos sobre chorros. Este trabajo, dirigido por Michael Janssen del Instituto Max Planck de Radioastronomía en Bonn y la Universidad Radboud de Nijmegen, sale publicado en Nature Astronomy.
En longitudes de onda de radio, Centaurus A emerge como uno de los objetos más grandes y brillantes del cielo nocturno. Después de ser identificado como una de las primeras fuentes de radio extragalácticas conocidas en 1949, Centaurus A ha sido estudiado extensamente en todo el espectro electromagnético por una variedad de observatorios de radio, infrarrojos, ópticos, rayos X y rayos gamma. En el centro de Centaurus A se encuentra un agujero negro con la masa de 55 millones de soles, que está justo entre las escalas de masa del agujero negro Messier 87 (seis mil quinientos millones de soles) y el que está en el centro de nuestra propia galaxia ( unos cuatro millones de soles).
En un nuevo artículo publicado en Nature Astronomy, los datos de las observaciones del EHT de 2017 se analizaron para obtener imágenes de Centaurus A con un detalle sin precedentes. «Esto nos permite por primera vez ver y estudiar un chorro de radio extragaláctico en escalas menores que la distancia que recorre la luz en un día. Vemos de cerca y personalmente cómo está naciendo un chorro monstruosamente gigantesco lanzado por un agujero negro supermasivo», dice el astrónomo Michael Janssen.

En comparación con observaciones anteriores de alta resolución, el jet lanzado en Centaurus A tiene una frecuencia diez veces mayor y una resolución dieciséis veces más nítida. Con el poder de resolución del EHT, ahora podemos vincular las vastas escalas de la fuente, que son tan grandes como 16 veces el diámetro angular de la Luna en el cielo, con su origen cerca del agujero negro en una región de tan solo el ancho de una manzana en la Luna cuando se proyecta en el cielo: un factor de aumento de mil millones.
Entendiendo los jets
Los agujeros negros supermasivos que residen en el centro de galaxias como Centaurus A se alimentan de gas y polvo que son atraídos por su enorme atracción gravitacional. Este proceso libera cantidades masivas de energía y se dice que la galaxia se vuelve «activa». La mayor parte de la materia que se encuentra cerca del borde del agujero negro cae. Sin embargo, algunas de las partículas circundantes escapan momentos antes de ser capturadas y son expulsadas al espacio: nacen los chorros, una de las características más misteriosas y energéticas de las galaxias.
Los astrónomos se han basado en diferentes modelos de cómo se comporta la materia cerca del agujero negro para comprender mejor este proceso. Pero todavía no saben exactamente cómo se lanzan los chorros desde su región central y cómo pueden extenderse a escalas que son más grandes que sus galaxias anfitrionas sin dispersarse. El EHT tiene como un objetivo resolver este misterio.
La nueva imagen muestra que el chorro lanzado por Centaurus A es más brillante en los bordes que en el centro. Este fenómeno se ha detectado en otros chorros, pero nunca antes se había visto de manera tan pronunciada. “Ahora podemos descartar modelos de chorro teóricos que no pueden reproducir este brillo de bordes. Es una característica sorprendente que nos ayudará a comprender mejor los chorros producidos por los agujeros negros ”, dice Matthias Kadler, líder de TANAMI y profesor de astrofísica en la Universidad de Würzburg en Alemania.
Observaciones futuras
Con las nuevas observaciones del chorro Centaurus A hechas por el EHT, se ha identificado la ubicación probable del agujero negro en el punto de lanzamiento del chorro. Basados en esta ubicación, los investigadores predicen que las observaciones futuras a una longitud de onda aún más corta y una resolución más alta podrían fotografiar el agujero negro central de Centaurus A. Esto requeriríael uso de observatorios satelitales espaciales.
“Estos datos son de la misma campaña de observación que entregó la famosa imagen del agujero negro en M87. Los nuevos resultados muestran que el EHT proporciona un tesoro de datos sobre la rica variedad de agujeros negros y aún hay más por venir ”, dice Heino Falcke, miembro de la junta del EHT y profesor de Astrofísica en la Universidad de Radboud.

Información adicional
Para observar la galaxia Centaurus A con esta resolución nítida, sin precedentes,a una longitud de onda de 1,3 mm, la colaboración EHT utilizó la interferometría de línea de base muy larga (VLBI), la misma técnica con la que se hizo la famosa imagen del agujero negro en M87. Una alianza en que ocho telescopios de todo el mundo, de la que ALMA es parte, se unieron para crear el Event Horizon Telescope virtual del tamaño de la Tierra. La colaboración de EHT involucra a más de 300 investigadores de África, Asia, Europa, América del Norte y del Sur.
El consorcio EHT consta de 13 institutos interesados: el A cademia Sinica Institute of Astronomy and Astrophysics, University of Arizona, University of Chicago, East Asian Observatory, Goethe University Frankfurt, Institut de Radioastronomie Millimétrique (MPG/CNRS/IGN), Large Millimeter Telescope, Instituto Max Planck de Radioastronomía, Observatorio Haystack del MIT, Observatorio Astronómico Nacional de Japón, Instituto Perimetral de Física Teórica, Universidad de Radboud y Centro de Astrofísica | Harvard y Smithsonian.
TANAMI (Seguimiento de núcleos galácticos activos con interferometría de miliarcsegundos austral) es un programa de longitud de onda múltiple para monitorear chorros relativistas en núcleos galácticos activos del cielo austral. Este programa ha estado monitoreando Centaurus A con VLBI en longitudes de onda de centímetros desde mediados de la década de 2000. La matriz TANAMI consta de nueve radiotelescopios ubicados en cuatro continentes que observan a longitudes de onda de 4 cm y 1,3 cm.
The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).
ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.